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Bond percolation processes in d dimensions 

D S Gaunt and Heather Ruskin 
Wheatstone Physics Laboratory, King's College, Strand, London WC2R 2LS, UK 

Received 30 January 1978 

Abstract. We study bond percolation processes on a d-dimensional simple hypercubic 
lattice. Exact expansions for the mean number of clusters, K ( p ) ,  and the mean cluster 
size, S ( p ) ,  in powers of l/a, where U = 2d - 1 and p < p c ,  are derived through fifth and 
fourth order, respectively. The zeroth-order terms are the Bethe approximations. The 
critical probability p E  is found to have the expansion, probably asymptotic, 

p c  = fT-'(l+ 2 5 F 2  + 75u-'+ 57u-4 + . . .), 
while the cluster growth parameter A can be expanded as 

A = A B ( ~ - ~ u - ~ - .  . .) 
where A B  is the Bethe approximation for A. 

We also present series data for the mean cluster size and the cluster growth function for 
d = 4 to 7. Numerical analysis suggests that the critical dimension, d,, for bond percola- 
tion is d,=6, as it seems to be for the site problem. The evidence also supports the 
conjecture that the value of a particular critical exponent in a given dimension is the same 
for both bond and site processes. 

1. Introduction and summary 

In this paper we continue our study of percolation processes on simple hypercubic 
lattices of coordination number v = 2d, where d is the lattice dimensionality. In our 
earlier work (Gaunt er a1 1976, to be referred to as GSR) we concentrated on site 
percolation and now we turn our attention to the corresponding bond problem. 

The general techniques available for series development in higher d have been 
described by Fisher and Gaunt (1964) in their study of the Ising model and the 
excluded volume problem in d dimensions. The derivation of low density expansions 
for the bond percolation problem has been described by Sykes and Glen (1976). In 
combining these methods, we have followed closely the procedure described in detail 
by GSR for site percolation. For this reason, we simply focus on the results and 
compare them with the analogous results for the site problem. The reader who would 
like further details and comments should refer to GSR. For a general review of 
percolation processes, see Essam (1972). 

We have divided the remainder of this paper into two sections. In Q 2 we derive 
low density expansions through p9 for the mean cluster size, S ( p ) ,  on hypercubic 
lattices of dimensionality d = 4 to 7. These are analysed to determine p , (d )  and ~ ( d )  
defined by 

We have also calculated the total number, Nb, of connected clusters of b bonds 
S(P)-- c ( P c - P ) - y ,  (P  + P c  - >. (1.1) 
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through Nlo for d = 4 to 7. Assuming an asymptotic form of the usual kind 

Nb - Ab-'A b,  (b + a) (1 4 
we have estimated A ( d )  and 8(d) .  

As d increases, it appears not unreasonable that y and 19 attain their classical 
values of y = 1 and 8 = 2; at d = 6. Thus, our analysis for the bond problem supports 
the suggestion first made by Toulouse (1974) that the critical dimension, d,, for 
percolation processes is d ,  = 6. The same conclusion was reached by GSR for the site 
problem. Furthermore, our estimates of y ( d )  and 8(d)  for the bond problem agree (to 
within the numerical uncertainties) with the corresponding estimates of GSR for the 
site problem. This supports the conjecture that the critical exponents for correspond- 
ing bond and site problems on the same lattice are identical. 

We also give in (2.4) of 9 2 the first three coefficients in a binomial expansion for 
Nb(d)  valid for general d and general b 3 3. A similar expansion is possible for the 
coefficient b : ( d )  of p r  in the low density expansion of (f)pS(p); we give;n (2.9) the 
first five coefficients for general r 3 8 .  In 9 3, we use these general binomial expan- 
sions to derive expansions in inverse powers of o = Y - 1 = 2d - 1 for the growth 
parameter A and the critical probability p ,  (see (3.7) and (3.15), respectively). As 
discussed by GSR these expansions are probably only asymptotic; nevertheless, they 
yield good approximations even when d = 3. We also derive l/o expansions valid for 
p < p c  for the mean cluster size, S ( p ) ,  and the mean number of clusters, K ( p )  (see 
(3.21) and (3.19), respectively). The l /cr  expansions are compared and contrasted 
with the corresponding expansions of GSR for the site problem and with the analogous 
expansions derived by Fisher and Gaunt (1964) for the Ising ferromagnet. As expec- 
ted from the work of Kasteleyn and Fortuin (1969), we find that the Ising/percolation 
analogy is much closer for bond percolation that it is for site percolation. 

2. Series expansions 

For the general d-dimensional simple hypercubic lattice, we have derived the first 
eight perimeter polynomials D,, one more than GSR for the corresponding site 
problem. They are, writing q = 1 - p ,  

D1 = q4d-2 (f) 

0 2  = 46d-4[(f)+4(i)] 

0 3  = 48d-6[(f)+(16+4q-1)($)+32($)] 
D4 = q10d-8[(f)+(53+32q-1 +q-Zd) ( i )+  (324+964 -1 )(3)+400(qd)] d 

Ds =qlZd-l0[(f)+(172+ 160q-'+30q-2+8q-2d)(i) 

+ (2448 + 15 12q-l + 180q-'+ 24q-2d)($)+ (8064 + 2304q-')(4) 

+6912(5d)] 

D6 = q'"-'*[(f)+ (568 + 672q-l+ 332q-2 + 40q-2d + 144-2d-1)(i) 

+(17041+ 15600q-1+4704q-2+400q-3+376q-2d +84q-2d-1)($) 

+(112824+63744q-' +9408q-2+576q-2d)(qd) 

+(239120+62720q-')(:)+ 153664(,d)] 
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D7 = q16d-14[(f)+(1906+2712q-1 +2030q-2+336q-3+ 168q-2d 

+ 156q-2d-' +2q-4d)(f)+(116004+ 1377364-' 

+ 67812q-2 + 15096q-3 + 384q-'+ 3864q-2d + 2208q-2d-1 

+264qvZd-'+ 12q-4d)($)+(1382400+ 1141248q-' 

+ 350400q-' +40256q-3 + 15840q-2d + 4416q-2d-')(,d) 

+ 5445 120 + 276992Oq-' + 407040q-' + 15680q-2d)(t) 

+ (8257536 + 1966080q-')(t)+4194304(;)] 

Ds = q18d-16[(;1)+(6471 + 10880q-' +9972q-2+4064q-3+ 192qF4+677qPzd 

+ 958q-2d-' + 228q-Zd-2+22q-4d)(i)+ (787965 + 1140576q-' 

+755532q-2+287280q-3+28704q-4+9216q-5 +33996q-2d 

+31908q-2d-' + 10080q-2d-2+408q-2d-4+312q-4d +72q-4d-1)($) 

+(15998985 + 17116800q-'+7855008q-2+ 1932864q-3 

+ 114816q-4+24576q-5+282216q-2d + 164928q-2d-' 

+ 26880q-2d-2 + 624q-4d )(4)+(104454120+77177280q-' 

+ 2223264OqW2 + 260928Oqp3 + 688640q-2d + 192000q-2d-')(;') 

+ (280717488 + 1287705604-' + 17729280q-* + 491520q-2d)(2) 

+ (326265408 + 705438724-')(;)+ 136048896(:)]. (2.1) 

These polynomials have been derived by the yield factor technique described by Sykes 
et a1 (1976b) using the general configurational data for the site problem through nine 
sites derived independently by M F Sykes and collaborators (private communication). 
For the square (d = 2 )  and simple cubic ( d = 3 )  lattice, these expressions reduce 
correctly to the known results which extend to 0 1 3  and Dg, respectively (unpublished 
work by Sykes and Glen 1976, Sykes et a1 1976~) .  The form of these polynomials 
diffemfrom the corresponding form found by GSR for the site problem by the presence 
of (l/q)-factors raised to d-dependent powers. Essentially, these factors occur 
because clusters with a given number of bonds can have various numbers of sites. 
Thus the first of these factors, namely q-2d in D4, arises from the square of 4 bonds 
(and 4 sites) of which there are (2d) on the lattice, all the remaining contributions to D4 
coming from clusters of 4 bonds and 5 sites. 

Using the general method outlined by Essam and Sykes (1966) we have also 
derived an expansion for the mean number of clusters in general form through p", 
and find 

K ( P )  = (?)p + [ - (?) - 4($] p 2  + [4(2d) + 8(,d)] p + [ - 12(,d) - 16(,d)]p4 

+ [6@) + 32(4d) + 3 2(g)] p + [2 ($) + 15 ($1 - 24(:) 

- 80(g)-64(6d)]p6+ [ -2@- 12($)+ 8(,d)+ go(:)+ 192(2) 

+ 128($)]p7 + [7(4') + 162($)+ 647& 40(:)- 240(2) 

-448(;)- 256($)]p8+ [ - 12($)-292($)- goo(:)+ lo(:) 

+ 160(2)+ 672(?)+ 1024($)+ 5 12($)]p9 + [28(;)+ 1950($) 
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+ 20576(4d)+ 47615(,d) - 60(2) - 560(;) - 1792(:) - 2304(9d) 

- 1024(pO)] p lo + [ - 54(;”)- 4980($) - 45504(,d) - 7 1040($ 

+ 12(2)+ 280($)+ 1792($)+4608(:)+ 5 120(;b) 

+2048(fi)]p”+. . . . (2.2) 

The corresponding expansion for site percolation processes is given by GSR through 
order one less. 

The procedures described by Sykes and Glen (1976) enable us, by using (2.1) and 
the first ten coefficients of (2.2), to obtain the total number of clusters with b bonds, 
Nb, through Nlo for all d. Explicit values are given in table 1 for d = 2 to 7. The 
additional data for d = 2 and 3 was obtained using the extra perimeter polynomials 
and extra coefficients in the K ( p )  expansion available in these low dimensions 
(unpublished work by Sykes and Glen 1976, Sykes er a1 1976~) .  

Alternatively, the data of table 1 can be summarised for all dimensions in the form 
h-1 

(12b4-20b3-33b2-46b + 195) 
6 

+( 2b-4(b + ~ ) ~ - ~ ( b  - 2)(b + 1) 

+ 2 b - ’ b b - 5 ( b - 2 ) ( b - 3 ) ) ( b ~ z ) + .  . .+(;I, (b 2 3). (2.4) 
The calculation of successive a i  numerically for values of b through b = 10 is simply a 
matter of arithmetic. In general, the derivation of the a i  as functions of b is more 
difficult than the calculation of the A ;  for the corresponding site problem, for which 
GSR also give the first three terms. However, contributions to cut, like those to 
Ai = 2‘-’~’-~, come from Cayley trees, since these are the only clusters which can 
enter all dimensions. Now Cayley trees with b bonds have (b + 1) sites, and hence it 
follows immediately that CY; =A!+’. The second and third terms of (2.4) are 
confirmed by the data of table 1. We saw earlier in connection with (2.1) that when 
the square cluster first appears it gives rise to a new feature in the bond problem, 
namely, a d-dependent power of (l/q). Likewise, the second (and smaller) contribu- 
tion to CY: arises from clusters consisting of a single square of 4 bonds and a tail of 
(b -4 )  bonds, each bond of which extends into a new dimension, resulting in a 
‘fully-stretched’ cluster which is only embeddable in a (b  - 4) + 2( = b - 2)-dimensional 
space. The fact that some of the ai  can only be written as the sum of different 
functions of b is another feature of the bond problem not shared with the A;  of the 
site problem. Notice, however, that the dominant contribution to CY! has the same 
structure as A:::, namely 

(b  -4V3~-1(6), ( ( = O ,  1,2 ,  * . .) (2.5) 2b-2€(b + i)b-Z(f+l) 

where P,,,(b) is a polynomial in b of degree m and P - , ( b )  is interpreted as 6-’ in a. b 

and A!+’.  The form of PZ and Ps in (2.4) suggests that for the bond problem 

P36- 1 ( b )  = (b  4- 1 )p3(-2(b) (2 * 6) 
where p3(-2(b)  is another polynomial of degree one less than P3f-l(b). Clearly, the 
last term in (2.4) corresponds to the solution of the linear chain and is ab”-1 = 1. 
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We have also obtained using (2.1) and (2.2) the expansion for the mean size of 
finite clusters, S ( p ) ,  given by 

for all d through bio. Explicit values are given in table 2 for d = 2 to 7.  The 
supplementary data for d = 2 and 3 is taken from Sykes and Glen (1976) and Sykes er 
a1 (1976c), respectively. Note that it is important to work with the coefficients b: 
rather than the coefficients 6, of S ( p )  itself as done by GSR for the site problem. This 
difference in treatment arises because in the bond problem physical quantities are 
defined 'per lattice bond' rather than 'per lattice site' as in the site problem. 

Table 2. Coefficients b: in the expansion of (f)pS(p)=X,zl hip' for a d-dimensional 
simple hypercubic lattice. 

d = 2  d = 3  d = 4  d = 5  d = 6  d = 7  

b;  2 
b$ 12 
b; 36 
b; 96 
b; 252 
b2 600 
b; 1524 
b;l 3 336 
b4 8 432 
b;o 17 336 
b;i 43 976 
biz  86116 
b:, 221664 
b i d  404864 
b;S 1122040 

3 
30 

150 
714 

3 342 
14 994 
67 686 

294 522 
1 304 682 
5 566 038 

24 376 170 

4 
56 

392 
2 672 

18 008 
119 168 
788 456 

5 141 120 
33 636 752 

217 379 600 

50 
90 

810 
7 170 

62 970 
547 890 

4 762 890 
41 133 570 

355 513 730 
3 057 241 370 

6 7 
132 182 

1452 2 366 
15 792 30 506 

170 772 391 622 
5 010 530 

64 065 134 
817 617 626 

10 434 586 442 
133 011 279 086 

1 836 792 
19 740 252 

21 1 444 392 
2 265 196 512 

24 210 714 792 

The data of table 2 can be summarised for all d in the alternative form 

r - 1  

(=O 
b : ( d ) =  1 P ; ( r _ " c )  (2.8) 

= 2'r!(:')+2'-*(r- 1)!2(r- 1)2(rdl> 

+ r 4 ( r  - 2)!5(6r4 -40r3 + 96r2 - 128r + 138)(,!2) 

+ 2'-6(r - 3)!$(4r6 - 56r5 + 3 16r4 - 976r3 + 1996r2 - 3084r + 3360)(,!3) 

+2'-*(r -4)!&(15r8-360r7+3680r6-21312r5+79610r4 

- 2 12 1 00r3 + 440 1 80r2 - 7 13433r + 760860)(,$) 

+ . . . + 2(3, (r 3 8). (2.9) 
The numerical calculation of successive /3; through r = 10 is again a matter of 
arithmetic. The derivation of the general form (2.9) is not as difficult as the derivation 
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of (2.4) since it appears that none of the ,f3; has to be written as the sum of different 
functions of r. We have derived the first five ,f3:(( = 0, 1, 2, 3,4), while for the 
corresponding expansion for the site problem, GSR give the first four B;([ = 0, 1 ,2 ,  3). 
Note that PI, = B& and that 0; and B; have the same general structure 

2‘-2*(r - 5)! QZP(r), (5 = 0, 1, 2, . . .) (2.10) 

where QzC(r) is a polynomial in r of degree 25. Clearly the last term in (2.9) 
corresponds to the solution of the linear chain and is Pi-1 = 2. 

To end this section we report our analysis of the low density expansions of the 
mean cluster size, S ( p ) ,  and the expansions of the generating function, A(r ) ,  for the 
total number of clusters with b bonds. The procedure that we have followed is based 
upon the ratio and Pad6 approximant techniques (Gaunt and Guttmann 1974) and is 
described in d 4 of GSR. 

Our best overall estimates of p c ,  A ,  y and 8 for d = 4 to 7 are presented in table 3. 
For completeness the corresponding values for d = 2 and 3 are also tabulated. For 
the percolation problem, pc(2) = is an exact result (Sykes and Essam 1963), y(2) is 
taken from Sykes et a1 (1976a), while pc(3) and y(3) are from Sykes et a1 (1976~).  
Independent estimates of pc(d) due to Fisch (1977) are also tabulated; the agreement 
with our estimates is seen to be excellent. For the total number of clusters, A(2) is 
from Sykes and Glen (1 976.) although we have increased their uncertainty by 50% 
because of the uncertainty of 0.01 that we have estimated for their estimate of 8(2). 
The value A(3)= 10.62 agrees with Sykes et a1 (1976c), although our uncertainty is 
larger because of our estimate of the uncertainty in 8(3). Sykes et a1 (1976~)  simply 
found that ‘8 is about I?. Our central estimate of 8, which we obtained by applying the 
same methods that we have used for d 8 4 ,  is in precise agreement with a recent 
estimate of Guttmann and Gaunt (1978) obtained in a completely different way. 

The results of table 3 confirm that to within numerical accuracy the critical 
exponents y and 8 attain their classical values of y = 1 and 8 = 2; in six dimensions, 
that is, d, = 6. The same conclusion was drawn by GSR for site percolation processes. 
Furthermore, the estimates of y(d) and 8(d) for d = 2  to 6 agree to within the 
numerical uncertainties with those in table 3 of GSR for the corresponding site 
problem. This provides further support for the universality of critical exponents in 
percolation theory. 

3. Expansions in l /a  

By following closely the procedures outlined by GSR, we now derive expansions in the 
variable l/u. First we use the 1/u expansion for the binomial coefficient (4) given in 
(3.1) of GSR and substitute into (2.4) giving 

12bb-’(b -3) )u - ’+...I, ( b a 3 ) .  (b + l)b-6 
x ( 3b3 - 79b2+ 736 + 155 + 

(3.1) 

Formally taking the logarithm of the expression and using Stirling’s formula for the 
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factorial we find 

In N b ( d )  = b In a + b -2 In b - (1 In 2 7  - 1)- 2&b-'+ O(b-*)  

b(32b4- 149b3+ 171b2+ 1976 - 155) 
12(b + 1)' 

bbP4(b - l ) ( b  - 2)(b - - 
2(b + l)b-2 

(3.2) 

Hence, from the definition (1.2) it follows that 

This expansion will continue in this way provided, as seems probable, that the higher 
coefficients of (3.2) are also of O ( b )  for b large. Using the rigorous results of Fisher 
and Essam (1961) it can be shown that in the Bethe approximation the total number 
of clusters per site with b bonds is given asymptotically by 

Nb - B b - 5 / 2 [ ~ " / ( ~  - 1)"-'Ib, ( b  +a) (3.4) 
where the amplitude 

B = ( ~ / 2 7 r ) " ~ ( a  + l)u"(a - l)-("++). (3.5) 

Thus, in the Bethe approximation the growth parameter A is the same for bond and 
site clusters, namely 

hg = cr"/(a - I)"-'. (3.6) 

A(bond)=AB(1-2F2-.  . .). (3.7) 

~ ( s i t e ) = ~ ~ ( l - l ~ a - ' - 2 a - * - .  . .). (3.8) 

From (3.3) and (3.6) we find 

The corresponding expansion for site percolation is given by (3.1 1) of GSR, namely 

Hence, 

A (bond) - A (site) 
A B  = &-' + o ( ~ - ~ )  (3.9) 

suggesting that A(bond)>A(site), which is verified for d = 2 to 6 by the numerical 
results in table 3 and table 3 of GSR. The above inequality has recently been studied 
rigorously by Whittington and Gaunt (1978). 

The most significant difference between (3.7) and (3.8) is that for the bond 
problem, as far the l/a expansions for the Ising critical point and self-avoiding walk 
limit (Fisher and Gaunt 1964), the leading correction to the Bethe approximation is of 
second order in l / a ,  while for the site problem it is of first order. This is not entirely 
unexpected since we suspect from the work of Kasteleyn and Fortuin (1969) that bond 
percolation should provide a closer analogy with the Ising model and excluded volume 
problem than does site percolation. 

Assuming (3.7) is asymptotic (as seems likely), then truncation after the smallest 
term for given a should yield the optimum approximation. As occurred for the site 
problem, the expansion is so short that it is impossible to tell if the smallest term has 
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been attained in any dimension. Consequently we have estimated A by truncation 
after the last term; GSR found that such a procedure worked well for the site problem. 
The values obtained, A'"', are compared in table 3 with the best series estimates 
obtained in Q 2. Surprisingly, the l/a expansion is very accurate even for d = 2, A'") 
being only 0.8% larger than the series estimate. The difference between A and A'"' 
rises to a maximum of 5.7% for d = 3 and then decreases monotonically to less than 
1% again for d = 7. For d = 5 ,  6 and 7,  values of A'"' fall within the numerical 
uncertainties of the series estimates. It is interesting that for bond percolation A 
overestimates A for all d = 2 to 7 ,  whereas for site percolation the opposite occurs. 

A similar procedure can be followed for the coefficients b:(d). Since we have one 
more term of (2.9) than of the corresponding expansion for site percolation, we first 
require one more term in the 1 / a  expansion (3.1) of GSR for (f), namely 

+ ~ ~ ( ~ - 1 ) ( ~ - 2 ) ( ~ - 3 ) ( 1 5 ~ ~ - 1 5 0 ~ ~ + 4 5 5 ~ ~ - 4 6 8 ~ + 1 2 7 ) ( + - ~ + .  . . . (3.10) 

Substituting into (2.9) we find 

b:(d)= U'[ 1 + ~ ~ - ' + ( - 2 $ r + 8 ; ) a - ~ +  (- 10r + 5 7 ) ~ - ~ +  (3$r2-  822r + 550)aW4+, . .], 
(r 2 8). (3.11) 

Denoting the integer part of x by [XI, we see that the coefficient of a-m appears to be 
a polynomial in r of degree [$m], as compared to degree m for site percolation. 
Taking the logarithm of (3.11) yields 

In b:(d)=r In ( ~ + a - l + ( - 2 $ r + g ) a - ~ + ( - 7 4 r + 4 8 ~ ) a - ~ + ( - 5 3 ~ r + 4 6 5 ~ ) ( + - ~ + .  . , , 

(r 2 8) (3.12) 

where the higher-order terms in r2 have all cancelled. Assuming, as seems likely, that 
this cancellation will continue in the general term, the logarithm will be formally linear 
in r to all orders. This simple situation also occurs in the corresponding expansions for 
site percolation, the excluded volume problem and the Ising problem (GSR, Fisher and 
Gaunt 1964). For the total number of bond or site clusters, a more complicated 
situation obtains, as given by (3.2) and by (3.4) of GSR, in which the general term is 
only asymptotically linear. 

Formally defining a limit p by 

1 
lnp(d)=l im-Inb:(d)  

r - m  r 
we find 

(3.13) 

In p (d) = In a - 2$a-2 - 740--~ - 53' 8 8  -4 - . . . .  (3.14) 

As for the site problem, the radius of convergence of the S ( p )  series is determined by 
a singularity on the negative real p axis, at least for small enough d. However, 
following the arguments of GSR, we write ,U = l / p c  and find from (3.14) that 

pc(bond) = a -* ( l+  2 $ f 2  + 7$a-3 + 5 7 ~ - ~ + .  . .). (3.15) 

The corresponding expansion for site percolation is given by GSR as 

pc(site) = a- ' ( l+ Ita-'  + 3 f ~ - ~  + 2 0 f ( ~ - ~  + . . .). (3.16) 

In both cases, the zeroth-order term is l/a which is the Bethe approximation for p c  
for both bond and site percolation. As discussed earlier for the cluster growth 
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parameter A, the leading correction term is, as expected, of second order for bond 
percolation but first order for site percolation. 

It follows from (3.15) and (3.16) that 

p,(site)-p,(bond) = l+c~-'+ l $ ~ - ~ +  1 3 $ ( ~ - ~  + . . . (3.17) 

suggesting p,(site)>p,(bond), which is verified for d = 2 to 6 by the numerical results 
in table 3 and table 3 of GSR. The above inequality is proved for the triangular lattice 
since this is the only case for which p c  is known exactly for both bond and site 
problems (Sykes and Essam 1963). The weaker result, p,(site)*p,(bond), has been 
proved rigorously by Hammersley (1961) for all lattices. 

It is easy to demonstrate explicitly that the magnitude of the terms in (3.15) pass 
through a minimum for d = 2, 3 and 4. For d = 5 it is likely that the last term in (3.15) 
is the smallest. Assuming this to be the case and hence truncating after the last term 
yields an estimate which is too small by an amount equal to 1.4 times the smallest 
term. We have therefore calculated approximations, p?', to p c  from (3.15) by trun- 
cating after the smallest term and adding 1.4 times the smallest term for all d. For the 
purpose of these calculations we have assumed that the last term is the smallest for 
both d = 6 and 7; for d = 6 this assumption is possibly correct while for d = 7 it is 
probably wrong but should not affect the final result too much. The estimates 
obtained in this way are presented in table 3 where they are compared with the best 
series estimates obtained in 0 2. The accuracy of p%' is worst (11% too large) for 
d = 2 as might be expected. For d = 3, pL') is around to/' too large and for d = 4 is 
about 2% too small. For d = 5, p p '  coincides with the series estimate by construction, 
while for d = 6 and 7, p?) lies well within the numerical uncertainties of the series 
estimates. 

We have also derived l/a expansions for the mean number of clusters, K ( p ) ,  and 
for the mean cluster size, S ( p ) .  For the mean number of clusters we must first subtract 
from (2.2) the corresponding expansion for the Bethe approximation, namely 

KB ( p ) = ( ?)P - [ (?) + 4 (;)I P + [ 4 (2d) + 8 ($)I p - [ (2d) + 1 2 ( t )  + 16(4d)] p 

+ 16(:) + W4d) + 32(;)1p5 - 
+ [ 8(:) + SO(:) + 192 (2) + 12 8(;)] p 

+ + SO(:) + 64(6d)l p 6  

- [(:)+40(:)+ 240(2)+ 448(,d)+ 256(f)]p8 

+[lo(:)+ 160(:)+672($+ 1024(f)+ 512(g)]p9 

- [ (t)  + 60(2) + 560(7d) + 1792(:) + 2304(,d) + 1024($)] p lo  

+ [ 12(2)+ 280(:)+ 1792(:)+ 4608(,d)+ 5 120(&)+ 2048(t1)]p" 

* . . .  (3.18) - 

Then by following the procedure detailed by GSR we find 
K = KB + ( Q x 4 ) 8  + ( 5 X 6 ) f 3  + (- gx 1 4  - t x 6  - ax7 + 1 s x  8)a-4 

+ (- iX6 + s x 7  - 1oQx8 - 2AX9 + 12gX l o ) 2  

+ ( t x 6  + $x' + 14$x8 + 1 0&x9- 132Aix lo - 1 8 ; ~  l 1  + , . .)a-6 
+ ( - + x 7 + 1 0 ~ x 8 - 1 2 ~  IZX + 4 7 9 3 ~  23 10 + 1 5 9 ~ " + .  , .)a-' 

+ (- 16&x8 - lO&x9 - 4 8 4 & ~  lo  - 4502~"  + . . .)a-8 
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43 10 + ( 1 4 : ~ ~  - 492120~ + 3 1 0 4 ~  '' + . . .)F9 + ( 6 1 6 2 ~  lo + 469:~" + . . .)U-" 

+ (- 4 6 9 ; ~ ' ~  + . . ,)U-" + . . . , ( x  = UP), (3.19) 

which is correct to order x'' and to order (l/& Evidently the coefficients have the 
same form as they do for the site problem, namely, the coefficient of U-"' is a 
polynomial in x, the term of lowest degree being x m  and that of highest degree being 

In as far as the truncated series in l/a is a good representation of K ( p )  we may 
conclude thdt the Bethe approximation becomes more accurate as U + 00. The leading 
correction term is again of second order in l / ~ .  The analogous expansion for the free 
energy f = N-' In 2 of the Ising model (Fisher and Gaunt 1964) is 

X2m. 

+ ( - fx - 9;x + 12fx 1°)a-' + . . . (3.20) 

where fB is the Bethe approximation for T > T,. The correspondence between (3.19) 
and (3.20) is (as expected) even closer than that observed between (3.20) and the 
expansion corresponding to (3.19) for the site problem, namely (3.24) in GSR. The 
first two correction terms are identical while the correction terms of order ( l / ~ ) ~  
differ only by the term -ax7 in (3.19). Even the terms of order ( 1 / ~ ) '  are not too 
different, the first and last coefficients being identical. As pointed out by GSR this 
similarity in form reflects the close formal analogy which exists between the free 
energy of the Ising ferromagnet and the mean number of clusters in the percolation 
problem (Kasteleyn and Fortuin 1969). 

For the mean cluster size, S ( p ) ,  we find, following the methods outlined by GSR, 
that 

3x3 + 2x4 3x3+ 8x4- 18x5 - 8 x 6  -3 

(1 -x)' (1 -x)2 
s = s B -  + U 

- 6x4 + 6 6 ~ '  + 42x6 - 2 6 1 ~ ~  + 1 1 8x8 + 5 3 ; ~ ~  -4 + U + . . . .  (3.21) (1 - x)3 

The leading term, SB, is the Bethe approximation for p < p , ,  

sB(P)=(1 +gP)/(l-mp), ( P  < Pc) (3.22) 

which exhibits a simple pole at the Bethe critical point x = 1 as is to be expected. 

model (Fisher and Gaunt 1964) is 
The analogous expansion for the zero-field reduced susceptibility of the Ising 

(3.23) 

where xB is the Bethe approximation for T > T,. Although the Ising/percolation 
analogy is not now so close as it was for the free energy/mean number, it is much 
closer for the bond problem than it is for the site problem (see (3.26) of GSR). The 
leading correction term in both (3.21) and (3.23) is second order in ( l / ~ ) ,  but for the 
site problem it is first order. Furthermore, Fisher and Gaunt (1964) found that the 
coefficient of ( l /a )"  in (3.23) diverges at x = 1 like (1 -x)-~-[""~] as it does in (3.21), 
whereas for the site problem the divergence is like (1 -x)-("'+'). 
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